Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
J Neurol ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38743090

BACKGROUND: Research work has shown that hippocampal subfields are atrophic to varying extents in multiple sclerosis (MS) patients. However, studies examining the functional implications of subfield-specific hippocampal damage in early MS are limited. We aim to gain insights into the relationship between hippocampal atrophy and memory function by investigating the correlation between global and regional hippocampal atrophy and memory performance in early MS patients. METHODS: From the Italian Neuroimaging Network Initiative (INNI) dataset, we selected 3D-T1-weighted brain MRIs of 219 early relapsing remitting (RR)MS and 246 healthy controls (HC) to identify hippocampal atrophic areas. At the time of MRI, patients underwent Selective-Reminding-Test (SRT) and Spatial-Recall-Test (SPART) and were classified as mildly (MMI-MS: n.110) or severely (SMI-MS: n:109) memory impaired, according to recently proposed cognitive phenotypes. RESULTS: Early RRMS showed lower hippocampal volumes compared to HC (p < 0.001), while these did not differ between MMI-MS and SMI-MS. In MMI-MS, lower hippocampal volumes correlated with worse memory tests (r = 0.23-0.37, p ≤ 0.01). Atrophic voxels were diffuse in the hippocampus but more prevalent in cornu ammonis (CA, 79%) than in tail (21%). In MMI-MS, decreased subfield volumes correlated with decreases in memory, particularly in the right CA1 (SRT-recall: r = 0.38; SPART: r = 0.34, p < 0.01). No correlations were found in the SMI-MS group. CONCLUSION: Hippocampal atrophy spreads from CA to tail from early disease stages. Subfield hippocampal atrophy is associated with memory impairment in MMI-MS, while this correlation is lost in SMI-MS. This plays in favor of a limited capacity for an adaptive functional reorganization of the hippocampi in MS patients.

2.
Sci Rep ; 14(1): 6429, 2024 03 18.
Article En | MEDLINE | ID: mdl-38499607

Given the huge impact of the COVID-19 pandemic, it appears of paramount importance to assess the cognitive effects on the population returning to work after COVID-19 resolution. Serum levels of neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) represent promising biomarkers of neuro-axonal damage and astrocytic activation. In this cohort study, we explored the association between sNfL and sGFAP concentrations and cognitive performance in a group of 147 adult workers with a previous asymptomatic SARS-CoV-2 infection or mild COVID-19, one week and, in 49 of them, ten months after SARS-Cov2 negativization and compared them to a group of 82 age and BMI-matched healthy controls (HCs). sNfL and sGFAP concentrations were assessed using SimoaTM assay Neurology 2-Plex B Kit. COVID-19 patients were interviewed one-on-one by trained physicians and had to complete a list of questionnaires, including the Cognitive Failure Questionnaire (CFQ). At the first assessment (T0), sNfL and sGFAP levels were significantly higher in COVID-19 patients than in HCs (p < 0.001 for both). The eleven COVID-19 patients with cognitive impairment had significantly higher levels of sNfL and sGFAP than the others (p = 0.005 for both). At the subsequent follow-up (T1), sNfL and sGFAP levels showed a significant decrease (median sNfL 18.3 pg/mL; median sGFAP 77.2 pg/mL), although they were still higher than HCs (median sNfL 7.2 pg/mL, median sGFAP 63.5 pg/mL). Our results suggest an ongoing damage involving neurons and astrocytes after SARS-Cov2 negativization, which reduce after ten months even if still evident compared to HCs.


COVID-19 , Multiple Sclerosis , Adult , Humans , Biomarkers , Cohort Studies , COVID-19/metabolism , Glial Fibrillary Acidic Protein/metabolism , Intermediate Filaments/metabolism , Multiple Sclerosis/metabolism , Neurofilament Proteins , Pandemics , RNA, Viral/metabolism , SARS-CoV-2
4.
J Magn Reson Imaging ; 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37787109

BACKGROUND: 1 H-magnetic resonance spectroscopy (1 H-MRS) may provide a direct index for the testing of medicines for neuroprotection and drug mechanisms in multiple sclerosis (MS) through measures of total N-acetyl-aspartate (tNAA), total creatine (tCr), myo-inositol (mIns), total-choline (tCho), and glutamate + glutamine (Glx). Neurometabolites may be associated with clinical disability with evidence that baseline neuroaxonal integrity is associated with upper limb function and processing speed in secondary progressive MS (SPMS). PURPOSE: To assess the effect on neurometabolites from three candidate drugs after 96-weeks as seen by 1 H-MRS and their association with clinical disability in SPMS. STUDY-TYPE: Longitudinal. POPULATION: 108 participants with SPMS randomized to receive neuroprotective drugs amiloride [mean age 55.4 (SD 7.4), 61% female], fluoxetine [55.6 (6.6), 71%], riluzole [54.6 (6.3), 68%], or placebo [54.8 (7.9), 67%]. FIELD STRENGTH/SEQUENCE: 3-Tesla. Chemical-shift-imaging 2D-point-resolved-spectroscopy (PRESS), 3DT1. ASSESSMENT: Brain metabolites in normal appearing white matter (NAWM) and gray matter (GM), brain volume, lesion load, nine-hole peg test (9HPT), and paced auditory serial addition test were measured at baseline and at 96-weeks. STATISTICAL TESTS: Paired t-test was used to analyze metabolite changes in the placebo arm over 96-weeks. Metabolite differences between treatment arms and placebo; and associations between baseline metabolites and upper limb function/information processing speed at 96-weeks assessed using multiple linear regression models. P-value<0.05 was considered statistically significant. RESULTS: In the placebo arm, tCho increased in GM (mean difference = -0.32 IU) but decreased in NAWM (mean difference = 0.13 IU). Compared to placebo, in the fluoxetine arm, mIns/tCr was lower (ß = -0.21); in the riluzole arm, GM Glx (ß = -0.25) and Glx/tCr (ß = -0.29) were reduced. Baseline tNAA(ß = 0.22) and tNAA/tCr (ß = 0.23) in NAWM were associated with 9HPT scores at 96-weeks. DATA CONCLUSION: 1 H-MRS demonstrated altered membrane turnover over 96-weeks in the placebo group. It also distinguished changes in neuro-metabolites related to gliosis and glutaminergic transmission, due to fluoxetine and riluzole, respectively. Data show tNAA is a potential marker for upper limb function. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 4.

5.
Cells ; 12(19)2023 09 29.
Article En | MEDLINE | ID: mdl-37830598

Hereditary transthyretin (ATTRv) amyloidosis with polyneuropathy, also known as familial amyloid polyneuropathy (FAP), represents a progressive, heterogeneous, severe, and multisystemic disease caused by pathogenic variants in the TTR gene. This autosomal-dominant neurogenetic disorder has an adult onset with variable penetrance and an inconstant phenotype, even among subjects carrying the same mutation. Historically, ATTRv amyloidosis has been viewed as a non-inflammatory disease, mainly due to the absence of any mononuclear cell infiltration in ex vivo tissues; nevertheless, a role of inflammation in its pathogenesis has been recently highlighted. The immune response may be involved in the development and progression of the disease. Fibrillary TTR species bind to the receptor for advanced glycation end products (RAGE), probably activating the nuclear factor κB (NF-κB) pathway. Moreover, peripheral blood levels of several cytokines, including interferon (IFN)-gamma, IFN-alpha, IL-6, IL-7, and IL-33, are altered in the course of the disease. This review summarizes the current evidence supporting the role of the immune response in ATTRv amyloidosis, from the pathological mechanisms to the possible therapeutic implications.


Amyloid Neuropathies, Familial , Adult , Humans , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/pathology , Receptor for Advanced Glycation End Products , NF-kappa B , Interferon-alpha , Immunity
7.
Eur J Neurol ; 30(10): 3256-3264, 2023 10.
Article En | MEDLINE | ID: mdl-37335505

BACKGROUND AND PURPOSE: Serum levels of neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) are promising neuro-axonal damage and astrocytic activation biomarkers. Susac syndrome (SS) is an increasingly recognized neurological condition and biomarkers that can help assess and monitor disease evolution are highly needed for the adequate management of these patients. sNfL and sGFAP levels were evaluated in patients with SS and their clinical relevance in the relapse and remission phase of the disease was assessed. METHODS: As part of a multicentre study that enrolled patients diagnosed with SS from six international centres, sNfL and sGFAP levels were assessed in 22 SS patients (nine during a relapse and 13 in remission) and 59 age- and sex-matched healthy controls using SimoaTM assay Neurology 2-Plex B Kit. RESULTS: Serum NfL levels were higher than those of healthy controls (p < 0.001) in SS patients and in both subgroups of patients in relapse and in remission (p < 0.001 for both), with significantly higher levels in relapse than in remission (p = 0.008). sNfL levels showed a negative correlation with time from the last relapse (r = -0.663; p = 0.001). sGFAP levels were slightly higher in the whole group of patients than in healthy controls (p = 0.046) and were more pronounced in relapse than in remission (p = 0.013). CONCLUSION: In SS patients, both sNFL and sGFAP levels increased compared with healthy controls. Both biomarkers had higher levels during clinical relapse and much lower levels in remission. sNFL was shown to be time sensitive to clinical changes and can be useful to monitor neuro-axonal damage in SS.


Multiple Sclerosis , Susac Syndrome , Humans , Biomarkers , Glial Fibrillary Acidic Protein , Intermediate Filaments/metabolism , Multiple Sclerosis/diagnosis , Neurofilament Proteins , Recurrence , Susac Syndrome/metabolism
8.
Article En | MEDLINE | ID: mdl-37246320

Alzheimer's disease (AD) represents the most prevalent type of neurodegenerative dementia and the sixth leading cause of death worldwide. The so-called "non-calcemic actions" of vitamin D have been increasingly described, and its insufficiency has already been linked to the onset and progression of the main neurological diseases, including AD. Immune-mediated Aß plaque's phagocytosis and clearance, immune response, oxidative stress, and mitochondrial function are all influenced by vitamin D, and these functions are considered relevant in AD pathogenesis. However, it has been shown that the genomic vitamin D signaling pathway is already impaired in the AD brain, making things more complicated. In this paper, we aim to summarise the role of vitamin D in AD and review the results of the supplementation trials in AD patients.

9.
Cells ; 13(1)2023 12 26.
Article En | MEDLINE | ID: mdl-38201258

This review analyzes the role of TNF-α and its increase in biological fluids in mild cognitive impairment, and Alzheimer's disease (AD). The potential inhibition of TNF-α with pharmacological strategies paves the way for preventing AD and improving cognitive function in people at risk for dementia. We conducted a narrative review to characterize the evidence in relation to the involvement of TNF-α in AD and its possible therapeutic inhibition. Several studies report that patients with RA and systemic inflammatory diseases treated with TNF-α blocking agents reduce the probability of emerging dementia compared with the general population. Animal model studies also showed interesting results and are discussed. An increasing amount of basic scientific data and clinical studies underscore the importance of inflammatory processes and subsequent glial activation in the pathogenesis of AD. TNF-α targeted therapy is a biologically plausible approach for cognition preservation and further trials are necessary to investigate the potential benefits of therapy in populations at risk of developing AD.


Alzheimer Disease , Cognitive Dysfunction , Animals , Humans , Alzheimer Disease/drug therapy , Tumor Necrosis Factor-alpha , Cognition , Cognitive Dysfunction/drug therapy , Feces
10.
Brain Sci ; 12(12)2022 Dec 12.
Article En | MEDLINE | ID: mdl-36552168

Hereditary transthyretin (ATTRv) amyloidosis is a severe, progressive, and heterogeneous multisystemic condition due to mutations in the TTR gene. Although multiple aspects of its molecular pathophysiological mechanisms have been elucidated over the years, it is possible to hypothesize different pathogenetic pathways. Indeed, we extensively investigated the serum levels of several molecules involved in the immune response, in a cohort of ATTRv patients and healthy controls (HCs). Sixteen ATTRv patients and twenty-five HCs were included in the study. IFN-alpha levels were higher in ATTRv patients than in HCs, as well as IFN-gamma levels. By contrast, IL-7 levels were lower in ATTRv patients than in HCs. No significant difference between groups was found regarding IL-1Ra, IL-6, IL-2, IL-4, and IL-33 levels. Correlation analysis did not reveal any significant correlation between IFN-α, IFN-γ, IL-7, and demographic and clinical data. Larger and longitudinal studies using ultrasensitive methods to perform a full cytokine profiling are needed to better elucidate the role of inflammation in ATTRv pathogenesis and to test the reliability of these molecules as possible biomarkers in monitoring patients' progression.

11.
J Neurol Neurosurg Psychiatry ; 93(12): 1343-1348, 2022 12.
Article En | MEDLINE | ID: mdl-36137741

BACKGROUND: To assess whether SARS-CoV-2 infection may affect the central nervous system, specifically neurons and glia cells, even without clinical neurological involvement. METHODS: In this single centre prospective study, serum levels of neurofilament light chain (sNfL) and glial fibrillar acidic protein (sGFAp) were assessed using SimoaTM assay Neurology 2-Plex B Assay Kit, in 148 hospitalised patients with COVID-19 without clinical neurological manifestations and compared them to 53 patients with interstitial pulmonary fibrosis (IPF) and 108 healthy controls (HCs). RESULTS: Age and sex-corrected sNfL levels were higher in patients with COVID-19 (median log10-sNfL 1.41; IQR 1.04-1.83) than patients with IPF (median log10-sNfL 1.18; IQR 0.98-1.38; p<0.001) and HCs (median log10-sNfL 0.89; IQR 0.72-1.14; p<0.001). Likewise, age and sex-corrected sGFAP levels were higher in patients with COVID-19 (median log10-sGFAP 2.26; IQR 2.02-2.53) in comparison with patients with IPF (median log10-sGFAP 2.15; IQR 1.94-2.30; p<0.001) and HCs (median log10-sGFAP 1.87; IQR 0.64-2.09; p<0.001). No significant difference was found between patients with HCs and IPF (p=0.388 for sNfL and p=0.251 for sGFAp). In patients with COVID-19, a prognostic model with mortality as dependent variable (26/148 patients died during hospitalisation) and sNfl, sGFAp and age as independent variables, showed an area under curve of 0.72 (95% CI 0.59 to 0.84; negative predictive value (NPV) (%):80,positive predictive value (PPV)(%): 84; p=0.0008). CONCLUSION: The results of our study suggest that neuronal and glial degeneration can occur in patients with COVID-19 regardless of overt clinical neurological manifestations. With age, levels of sNfl and GFAp can predict in-hospital COVID-19-associated mortality and might be useful to assess COVID-19 patient prognostic profile.


Brain , COVID-19 , Neuroglia , Neurons , Humans , Biomarkers/blood , Brain/pathology , Brain/virology , COVID-19/mortality , COVID-19/pathology , Neurofilament Proteins/blood , Neuroglia/pathology , Neuroglia/virology , Neurons/pathology , Neurons/virology , Prospective Studies , SARS-CoV-2 , Male , Female , Prognosis
12.
J Alzheimers Dis ; 88(4): 1241-1262, 2022.
Article En | MEDLINE | ID: mdl-35754274

Alzheimer's disease (AD) represents the most common type of neurodegenerative dementia and is characterized by extracellular amyloid-ß (Aß) deposition, pathologic intracellular tau protein tangles, and neuronal loss. Increasing evidence has been accumulating over the past years, supporting a pivotal role of inflammation in the pathogenesis of AD. Microglia, monocytes, astrocytes, and neurons have been shown to play a major role in AD-associated inflammation. However recent studies showed that the role of both T and B lymphocytes may be important. In particular, B lymphocytes are the cornerstone of humoral immunity, they constitute a heterogenous population of immune cells, being their mature subsets significantly impacted by the inflammatory milieu. The role of B lymphocytes on AD pathogenesis is gaining interest for several reasons. Indeed, the majority of elderly people develop the process of "inflammaging", which is characterized by increased blood levels of proinflammatory molecules associated with an elevated susceptibility to chronic diseases. Epitope-specific alteration pattern of naturally occurring antibodies targeting the amino-terminus and the mid-domain of Aß in both plasma and cerebrospinal fluid has been described in AD patients. Moreover, a possible therapeutic role of B lymphocytes depletion was recently demonstrated in murine AD models. Interestingly, active immunization against Aß and tau, one of the main therapeutic strategies under investigation, depend on B lymphocytes. Finally. several molecules being tested in AD clinical trials can modify the homeostasis of B cells. This review summarizes the evidence supporting the role of B lymphocytes in AD from the pathogenesis to the possible therapeutic implications.


Alzheimer Disease , Aged , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , B-Lymphocytes , Humans , Inflammation , Mice , Neurons/metabolism , tau Proteins
13.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article En | MEDLINE | ID: mdl-36613531

Vitamin D may have multiple effects on the nervous system and its deficiency can represent a possible risk factor for the development of many neurological diseases. Recent studies are also trying to clarify the different effects of vitamin D supplementation over the course of progressive neurological diseases. In this narrative review, we summarise vitamin D chemistry, metabolism, mechanisms of action, and the recommended daily intake. The role of vitamin D on gene transcription and the immune response is also reviewed. Finally, we discuss the scientific evidence that links low 25-hydroxyvitamin D concentrations to the onset and progression of severe neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, migraine, diabetic neuropathy and amyotrophic lateral sclerosis. Completed and ongoing clinical trials on vitamin D supplementation in neurological diseases are listed.


Diabetic Neuropathies , Multiple Sclerosis , Parkinson Disease , Vitamin D Deficiency , Humans , Vitamin D/metabolism , Vitamins/therapeutic use , Multiple Sclerosis/drug therapy , Parkinson Disease/drug therapy , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/metabolism , Diabetic Neuropathies/drug therapy
14.
Neurohospitalist ; 12(1): 143-146, 2022 Jan.
Article En | MEDLINE | ID: mdl-34950403

Trigeminal neuralgia associated with brainstem lesions is currently considered as a rare condition and only few patients have been reported so far in literature. Tohyama and colleagues recently proposed the nosological entity of trigeminal neuralgia associated with solitary pontine lesion, trying to categorize it as a new clinical syndrome on its own. Based on this description, trigeminal neuralgia associated with solitary pontine lesion patients have an identical clinical presentation compared to other patients with trigeminal neuralgia but have a solitary pontine lesion. The nature of the pontine lesion has been attributed to several etiologies, including ischemia, demyelination or previous pontine viral neuritis. In those patients with a putative demyelinating lesion, a definite diagnosis of multiple sclerosis cannot be made due to the lack of dissemination in space. Very little is known in relation to the cerebrospinal fluid characteristics of this population of patients. We present a case of a 42-year-old man suffering of trigeminal neuralgia associated with solitary pontine lesion with a possible demyelinating etiology. The patient herein described had an atypical trigeminal neuralgia associated with a single pontine lesion. The MRI characteristics of the lesion, along with the presence of oligoclonal bands in the cerebrospinal fluid, suggested a demyelinating etiology. Trigeminal neuralgia associated with a solitary pontine lesion may be categorized as a possible manifestation of solitary sclerosis. Future research need to reveal which features can predict the risk of conversion to clinically defined multiple sclerosis and which treatments modify this risk.

15.
Clin Drug Investig ; 41(6): 513-527, 2021 Jun.
Article En | MEDLINE | ID: mdl-33886098

Riboflavin is classified as one of the water-soluble B vitamins. It is part of the functional group of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors and is required for numerous flavoprotein-catalysed reactions. Riboflavin has important antioxidant properties, essential for correct cell functioning. It is required for the conversion of oxidised glutathione to the reduced form and for the mitochondrial respiratory chain as complexes I and II contain flavoprotein reductases and electron transferring flavoproteins. Riboflavin deficiency has been demonstrated to impair the oxidative state of the body, especially in relation to lipid peroxidation status, in both animal and human studies. In the nervous system, riboflavin is essential for the synthesis of myelin and its deficiency can determine the disruption of myelin lamellae. The inherited condition of restricted riboflavin absorption and utilisation, reported in about 10-15% of world population, warrants further investigation in relation to its association with the main neurodegenerative diseases. Several successful trials testing riboflavin for migraine prevention were performed, and this drug is currently classified as a Level B medication for migraine according to the American Academy of Neurology evidence-based rating, with evidence supporting its efficacy. Brown-Vialetto-Van Laere syndrome and Fazio-Londe diseases are now renamed as "riboflavin transporter deficiency" because these are autosomal recessive diseases caused by mutations of SLC52A2 and SLC52A3 genes that encode riboflavin transporters. High doses of riboflavin represent the mainstay of the therapy of these diseases and high doses of riboflavin should be rapidly started as soon as the diagnosis is suspected and continued lifelong. Remarkably, some mitochondrial diseases respond to supplementation with riboflavin. These include multiple acyl-CoA-dehydrogenase deficiency (which is caused by ETFDH gene mutations in the majority of the cases, or mutations in the ETFA and ETFB genes in a minority), mutations of ACAD9 gene, mutations of AIFM1 gene, mutations of the NDUFV1 and NDUFV2 genes. Therapeutic riboflavin administration has been tried in other neurological diseases, including stroke, multiple sclerosis, Friedreich's ataxia and Parkinson's disease. Unfortunately, the design of these clinical trials was not uniform, not allowing to accurately assess the real effects of this molecule on the disease course. In this review we analyse the properties of riboflavin and its possible effects on the pathogenesis of different neurological diseases, and we will review the current indications of this vitamin as a therapeutic intervention in neurology.


Nervous System Diseases/drug therapy , Riboflavin/therapeutic use , Animals , Bulbar Palsy, Progressive/drug therapy , Bulbar Palsy, Progressive/genetics , Electron-Transferring Flavoproteins/genetics , Hearing Loss, Sensorineural/drug therapy , Humans , Membrane Transport Proteins/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Mutation , Nervous System Diseases/physiopathology , Riboflavin/metabolism
16.
Neurol Sci ; 42(5): 1941-1947, 2021 May.
Article En | MEDLINE | ID: mdl-32975673

BACKGROUND: Pain is one of the most disabling symptoms in multiple sclerosis. Chronic pain in multiple sclerosis is often neuropathic in nature, although a clear-cut distinction with nociceptive pain is not easy. OBJECTIVE: The aim of our study was to analyze the MRIs of multiple sclerosis patients with chronic pain in order to explore possible associations with lesion sites, on a voxel-by-voxel basis. MATERIALS AND METHODS: We enrolled patients aged > 18 years with multiple sclerosis in accordance with the 2010 McDonald criteria. Patients meeting criteria for persistent pain (frequent or constant pain lasting > 3 months) were included in the "pain group". The other patients were included in the "no pain group". We outlined lesions on FLAIR MRI scans using a semi-automated edge finding tool. To detect the association between lesion localization and persistent pain, images were analysed with the voxel-based lesion symptom mapping methods implemented in the (nonparametric mapping software included into the MRIcron. RESULTS: We enrolled 208 MS patients (140 F, mean age 55.2 ± 9.4 years; 176 RR, 28 progressive MS; mean EDSS 2.0 + 2.0). Pain group included 96 patients and no pain group 112 patients. Lesions of the right dorsolateral prefrontal area were significantly more prevalent in patients without pain, whereas periventricular posterior lesions were significantly more prevalent in patients with persistent pain. CONCLUSION: Our data suggest a role of the right dorsolateral prefrontal cortex in the modulation of pain perception and in the occurrence of chronic pain in MS patients. Our data also support a hemispheric asymmetry in pain perception and modulation.


Chronic Pain , Multiple Sclerosis , Aged , Chronic Pain/diagnostic imaging , Chronic Pain/etiology , Humans , Magnetic Resonance Imaging , Middle Aged , Multiple Sclerosis/complications , Multiple Sclerosis/diagnostic imaging , Prefrontal Cortex
17.
Lancet Neurol ; 19(3): 214-225, 2020 03.
Article En | MEDLINE | ID: mdl-31981516

BACKGROUND: Neurodegeneration is the pathological substrate that causes major disability in secondary progressive multiple sclerosis. A synthesis of preclinical and clinical research identified three neuroprotective drugs acting on different axonal pathobiologies. We aimed to test the efficacy of these drugs in an efficient manner with respect to time, cost, and patient resource. METHODS: We did a phase 2b, multiarm, parallel group, double-blind, randomised placebo-controlled trial at 13 clinical neuroscience centres in the UK. We recruited patients (aged 25-65 years) with secondary progressive multiple sclerosis who were not on disease-modifying treatment and who had an Expanded Disability Status Scale (EDSS) score of 4·0-6·5. Participants were randomly assigned (1:1:1:1) at baseline, by a research nurse using a centralised web-based service, to receive twice-daily oral treatment of either amiloride 5 mg, fluoxetine 20 mg, riluzole 50 mg, or placebo for 96 weeks. The randomisation procedure included minimisation based on sex, age, EDSS score at randomisation, and trial site. Capsules were identical in appearance to achieve masking. Patients, investigators, and MRI readers were unaware of treatment allocation. The primary outcome measure was volumetric MRI percentage brain volume change (PBVC) from baseline to 96 weeks, analysed using multiple regression, adjusting for baseline normalised brain volume and minimisation criteria. The primary analysis was a complete-case analysis based on the intention-to-treat population (all patients with data at week 96). This trial is registered with ClinicalTrials.gov, NCT01910259. FINDINGS: Between Jan 29, 2015, and June 22, 2016, 445 patients were randomly allocated amiloride (n=111), fluoxetine (n=111), riluzole (n=111), or placebo (n=112). The primary analysis included 393 patients who were allocated amiloride (n=99), fluoxetine (n=96), riluzole (n=99), and placebo (n=99). No difference was noted between any active treatment and placebo in PBVC (amiloride vs placebo, 0·0% [95% CI -0·4 to 0·5; p=0·99]; fluoxetine vs placebo -0·1% [-0·5 to 0·3; p=0·86]; riluzole vs placebo -0·1% [-0·6 to 0·3; p=0·77]). No emergent safety issues were reported. The incidence of serious adverse events was low and similar across study groups (ten [9%] patients in the amiloride group, seven [6%] in the fluoxetine group, 12 [11%] in the riluzole group, and 13 [12%] in the placebo group). The most common serious adverse events were infections and infestations. Three patients died during the study, from causes judged unrelated to active treatment; one patient assigned amiloride died from metastatic lung cancer, one patient assigned riluzole died from ischaemic heart disease and coronary artery thrombosis, and one patient assigned fluoxetine had a sudden death (primary cause) with multiple sclerosis and obesity listed as secondary causes. INTERPRETATION: The absence of evidence for neuroprotection in this adequately powered trial indicates that exclusively targeting these aspects of axonal pathobiology in patients with secondary progressive multiple sclerosis is insufficient to mitigate neuroaxonal loss. These findings argue for investigation of different mechanistic targets and future consideration of combination treatment trials. This trial provides a template for future simultaneous testing of multiple disease-modifying medicines in neurological medicine. FUNDING: Efficacy and Mechanism Evaluation (EME) Programme, an MRC and NIHR partnership, UK Multiple Sclerosis Society, and US National Multiple Sclerosis Society.


Multiple Sclerosis, Chronic Progressive/drug therapy , Neuroprotective Agents/therapeutic use , Administration, Oral , Adult , Amiloride/therapeutic use , Brain , Disease Progression , Double-Blind Method , Female , Fluoxetine/therapeutic use , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/drug therapy , Riluzole/therapeutic use , Treatment Outcome
18.
Neurol India ; 67(6): 1519-1521, 2019.
Article En | MEDLINE | ID: mdl-31857550

Until now, only one gestational tumefactive demyelinating lesion (TDL) has been described. Here we report two TDL cases occurring during and after the pregnancy. A 26-year-old 6-week pregnant woman developed a 3-cm left frontotemporoparietal subcortical TDL with inhomogeneous partial enhancement. Brain biopsy revealed a subacute demyelinating lesion with abundant macrophages and mild chronic perivascular inflammatory infiltrates. She also had femoralpopliteal deep vein thrombosis. During the 4-year follow-up, magnetic resonance imaging showed only residual biopsied TDL. The second case was a 41-year-woman affected by both multiple sclerosis (MS) and rheumatoid arthritis who developed a 2-cm right anterior corona radiata TDL with sporadic gadolinium-enhancing "annular spots" eight months after delivery. After steroid therapy at the 6-month radiological follow-up, this TDL was half-reduced. Five years earlier, at the beginning of her MS, she already had a 2-cm TDL with incomplete ring enhancement. These two described TDLs formed in prothrombotic conditions and were likely representative of thromboinflammation around and inside the small-medium veins.


Brain Neoplasms/diagnostic imaging , Demyelinating Diseases/diagnostic imaging , Pregnancy Complications/diagnostic imaging , Adult , Brain Neoplasms/pathology , Demyelinating Diseases/pathology , Female , Humans , Magnetic Resonance Imaging , Pregnancy , Pregnancy Complications/pathology
20.
Clin Psychopharmacol Neurosci ; 16(4): 508-509, 2018 Nov 30.
Article En | MEDLINE | ID: mdl-30466226
...